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Abstract 
The present work aims to quantify the potential benefits of a predictive maintenance strategy in offshore 
wind farms, benchmarking these benefits against corrective maintenance. The predictive maintenance is 
also tested for five different predictive periods, here referring to how many days ahead a failure can be 
predicted. To quantify these benefits, two analyses are performed based on a computational model 
developed in Python for this purpose, built with a module-based structure. Firstly, a wind farm analysis 
assesses the potential benefits that predictive maintenance can bring to a wind farm. Then, a component-
level analysis aims to statistically quantify total failure costs variability throughout the year, for each 
maintenance strategy and subassembly. Statistical logistic benefits in the total failure costs are also 
found. In general, major cost decreases are found in a 5-day predictive period. Wind farm results show 
that the lowest total wind farm costs, and highest energetic availability, were found for a 20-day 
predictive period. However, these total cost results are close to the results from the 10-day predictive 
period. The component level results show that different subassemblies have different logistic benefits, 
but similar benefits are found for the same maintenance type. The total failure cost benefits of the 
subassemblies’ replacements vary from 1.4% to 3.2%, major repairs from 13.3% to 19.6%, and minor 
repairs from 56.4% to 60.5%. 
Keywords: offshore wind farm, operation and maintenance, predictive maintenance, logistic benefits. 

1. Introduction 
Wind energy is one of the most promising 
sources of renewable energy. Despite recent 
technological advancements in the offshore wind 
sector, in the last decade, its cost of energy is 
still significant [1].  
Operation and maintenance (O&M) is a big 
contributor to these costs, representing about 
23% of the total investment costs of an offshore 
wind project (OWP) [2]. Offshore wind farms 
are deployed in harsh environmental conditions, 
which affects component reliability and 
maintenance requirements. Also, due to the high 
distance from shore, weather conditions and 
operational constraints, there are only some 
weather windows, that are long enough, where 
vessels are allowed to be deployed to perform 

the maintenance actions. Therefore, operations 
may be delayed, leading to an increase in 
operational costs (namely due to vessel hiring) 
but also in the downtime of the wind turbines 
which may lead to significant revenue losses [3]. 
The maintenance philosophy adopted in an 
OWP has an impact on O&M costs, downtime, 
and in turbine availability. Therefore, wind farm 
maintenance must be adequate, given the highly 
complex relationships between component 
repair schedules, maintenance crew logistics, 
and revenue opportunities [4]. Currently, the 
most adopted maintenance strategy consists in 
a combination of preventive maintenance (PM) 
and CM [4]. 
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Recently, research efforts have been directed 
towards PdM. In this maintenance strategy, 
prognostics-based methods are used to predict 
future component degradation, allowing to 
schedule the maintenance operations [5], in 
times with low energy production, and times 
with higher site accessibility, where 
environmental conditions are better suitable for 
the maintenance operations [4]. 
Given the technological advancements (e.g., 
with machine learning [6] [7]) in PdM, the 
present work aims to quantify the potential 
logistic benefits of PdM strategy in offshore 
wind farms, benchmarking these benefits 
against CM. For this, two analyses were carried 
out supported by a model developed for this 
purpose. The model is module-based and is 
integrating the DTO+LMO tool from 
DTOceanPlus project [8]. Firstly, a wind farm 
analysis is performed to understand what are 
the potential logistic benefits that a PdM can 
bring to a wind farm. Then, a component-
focused analysis was performed, estimating the 
operational durations and costs that are 
resulting from pure CM and PdM strategies. 

2. Methodology 
Both analysis, that are carried out, are 
supported by the developed model that is using 
a module-based structure. 

2.1. Reliability Module 
The reliability is responsible for generating 
component failure events throughout the project 
lifetime based on failure rates reported in 
literature (e.g., Carroll [9]) and typical failure 
probability distributions, commonly used in 
reliability theory. Failure events are distributed 
in the time-series by generating different time to 
failures (TTF). The TTFs are generated 
assuming a constant failure rate, leading to the 
usage of the exponential distribution. The 
cumulative distribution function for the 
exponential distribution is given by Equation 1, 

 𝐹(𝑡) = 1 − 𝑒 , (1) 
where, 𝜆  is the component’s failure rate, and 𝑡 
the TTF, in years. 

2.2. Power Module 
The power module objective is to compute the 
energy produced by in each hour of its lifetime. 
To do this, three main steps are performed. 
Firstly, the mean hourly wind speed is 
extrapolated from reference height to turbine 
hub height [10]. Then, the power available is 
found in the turbine’s power curve for that wind 
speed. Finally, the energy production is 
computed for that hour. 

2.3. DTO+LMO Module 
This module contains the results from the 
DTO+LMO tool developed by WavEC – 
Offshore Renewables within the DTOceanPlus 
project [8]. This tool computes the operation 
durations that maintenance operations have if 
started in each hour of the components’ lifetime. 
These include the mobilization, waiting times, 
transit times, and the duration on site, which 
account the vessel positioning time, and repair 
time. 

2.4. Corrective Maintenance Module 
In a CM strategy the maintenance interventions 
are scheduled after failure occurrence. Thus, 
downtime will start immediately after the 
failure occurs, and last until the maintenance 
has been successfully completed on site (and 
thus not considering transit from site to port). 

2.5. Predictive Maintenance Module 
Different predictive periods were considered in 
the analysis to estimate their impacts on the 
maintenance scheduling and costs. In the 
present work, the predictive period refers to how 
many days in advance a potential failure can be 
detected with certainty. Each predictive period 
is used to model an independent, and purely, 
PdM strategy, only distinct by this feature. 
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There are two scenarios when computing the 
downtime. Figure 1 shows the scenario 1. 

 
Figure 1. Predictive maintenance downtime computation in scenario 1. 

The scenario 1 occurs when the predictive 
period is long enough to fit the total operation 
duration (minus the transit from site and repair 
time), and also the selected time to start the 
maintenance operation (green marker) is far 
enough from the predicted failure (red marker) 
so that the technicians can get to site before the 
predicted failure occurs. The downtime in 
scenario 1 will always be the duration on site. In 
Figures 1 and 2, the output durations from the 
DTO+LMO module are represented in blue, 
and the computed PdM downtime, in red. The 
yellow marker represents when the failure is 
predicted, and from that to the predicted 
failure, is the predictive period of that failure. 

The scenario 2 is modeling an exception. The 
predictive period may not be long enough to fit 
the total operation duration (minus the transit 
from site and repair time) or the selected time 
to start the maintenance operation (green 
marker) is too close to the predicted failure (red 
marker) thus, technicians don’t have time to get 
to the wind turbine before the predicted failure 
occurs. The downtime will now vary according 
to the selected starting scheduling of the 
maintenance operation. The downtime will start 
immediately after the predicted failure until the 
failure is repaired (after duration on site). 
Figure 2 shows the computation of downtime for 
scenario 2. 

 

 
Figure 2. Predictive maintenance downtime computation in scenario 2. 

The main goal of the PdM module is to reduce 
costs. The module will analyze every hour of the 
predictive period and compute the total costs. 
The analysis is conducted by computing the 
downtime, and total costs by simulating the 
start the maintenance operation in that hour. 
After it analyzes all the hourly time steps in the 
predictive period, it selects the hour with 
minimum total costs.  The optimized schedule 
is then found.  

Both maintenance modules are computing the 
costs of each failure in the same way, even 
though the PdM performs an optimization. The 
total costs include the operation costs, and the 
energy loss costs. The total operations costs 
consider the vessel, and component costs, and 
technician costs. The vessel costs are computed 
based on [8], where a self-propelled crane vessel 
is used for major replacement, a service 
operation vessel for major repairs, and a crew 
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transfer vessel for minor repairs. The cost of 
technicians were computed based on the average 
number of technicians.  
The revenue generated by a wind turbine comes 
from the sale of the energy that it produces. If 
a wind turbine is down, due to a failure, and if 
there is wind resource available, there are energy 
losses, that imply loss of revenue, associated 
with that downtime. This, from the point of 
view of O&M, can be seen as an opportunity 
cost that must be reduced. The indirect costs 
related to revenue losses were computed 
multiplying the energy losses, caused by 
downtime, with the price that the energy could 
eventually be sold, if it were produced. 

2.6. Availability Module 
To compute the turbine availability, this 
module includes a time-series builder that aims 
to build operation time-series of each turbine 
along their whole lifetime, that are used to 
compute three availabilities. First, the technical 
availability, that includes only the downtimes 

caused by component failures. Then, the 
operational availability includes the downtimes 
caused by component failures, and times where 
the wind speed is out of the power curve. 
Finally, the energetic availability is based on the 
energy produced by the wind turbine during its 
lifetime, divided by the potential energy that 
could be produced in that same lifetime. 

2.7. Base Case Study 
Both analyses use the base case inputs. The 
DTU 10 MW reference wind turbine was used, 
with a turbine hub height of 119 m and power 
curve found in [11]. Turbine breakdown was 
taken from [9], along with the subassemblies’ 
failure rates, used by the reliability module, and 
the average number of technicians. Also, the 
component costs for minor and major repair 
costs are assumed to be the same as in [9], but 
the replacement costs were adapted with [12] for 
a 10MW turbine. Table 1 shows how these costs 
were adapted. 

Table 1. Average repair costs of each subassembly adapted from [5]. 

 
Major Replacement [€] Major 

Repair 
[€] [9] 

Minor 
Repair 
[€] [9] Carroll [9] Used Info. 

Pitch / Hyd 14000 696150 
Sum of Blade pitch system and cooling 

and Hydraulic system costs in [12]. 
1900 210 

Other Components 10000 10000 Assumed same as [9]. 2400 110 
Generator 60000 676685 Taken from [12]. 3500 160 
Gearbox 230000 1772250 Taken from [12]. 2500 125 
Blade 90000 701222 Taken from [12]. 1500 170 
Grease / Oil / Cooling Liq. - - Failure rate is zero. 2000 160 
Electrical Components 12000 12000 Assumed same as [9]. 2000 100 
Contactor / Circuit / Breaker / Relay 3500 13500 Assumed same as [9]. 2300 260 
Controls 13000 13000 Assumed same as [9]. 2000 200 
Safety - - Failure rate is zero. 2400 130 
Sensors - - Failure rate is zero. 2500 150 
Pumps / Motors - - Failure rate is zero. 2000 330 
Hub 95000 275570 Taken from [12]. 1500 160 
Heaters / Coolers - - Failure rate is zero. 1300 465 
Yaw System 12500 383520 Taken from [12]. 3000 140 
Tower / Foundation - - Failure rate is zero. 1100 140 
Power Supply / Converter 13000 668440 Cost of Power Electronics in [12]. 5300 240 
Service Items - - Failure rate is zero. 1200 80 
Transformer 70000 525045 Cost of Electrical Connections in [12]. 2300 95 
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The predictive periods considered in the PdM 
module are 5, 10, 20, 40, and 80 days. These are 
based on literature, where it was found that 
generator faults can be predicted 18 days ahead 
of time [7], and in another work, the degradation 
of a wind turbine was successfully detected 44 
days prior to failure [13]. 

2.8. Wind Farm Analysis 
For the wind farm analysis, the objective is to 
quantify the benefits of a PdM strategy where a 
wind farm that composed of 20 equal wind 
turbines, is simulated. The model simulates all 
wind turbines, and all their components’ 
maintenance types. Figure 3 shows the diagram 
of the wind farm analysis. The reliability module 
simulates the component’s failures by 
generating TTFs that are based on its failure 
rates. Once a TTF is generated, it is sent to the 
availability module where the turbine operation 

time-series is being created. With this, the time 
of failure is determined. The corrective and 
predictive modules are supported by the power, 
and DTO+LMO modules to compute their 
results. The maintenance strategy modules use 
the time of failure to compute that failure’s 
results. In the CM module computes the total 
costs, and downtime that is returned to the 
availability module to be added to the operation 
time-series by the time-series builder. The PdM 
module, apart from downtime, also returns the 
optimized scheduling, that is based on minimum 
total costs, for the maintenance of the failure. 
This is considered by the time-series builder. 
The process continues until it simulates all 
failures, of all subassemblies and their 
maintenance types, for all turbines. Finally, the 
turbine availability can be computed through 
the time-series. 

 
Figure 3. Wind farm analysis diagram. 



6 
 

2.9. Component Level Analysis 
For the second analysis, the main objective is to 
understand the potential logistic benefits of a 
PdM strategy at a component level. The 
component level analysis uses the same four core 
modules used in wind farm analysis showed in 
Figure 3, namely the power, DTO+LMO 
operation, corrective, and predictive modules. In 
this analysis, 10500 failures are distributed, for 
each component and its different maintenance 
types, instead of being simulated by the 

reliability module. In this case, the availability 
module is also not used. Each failure is analyzed 
with the CM module, followed by the PdM 
module for the 5 different predictive periods. 

3. Results & Discussion 

3.1. Wind Farm Analysis 
The wind farm model is computing the three 
average lifetime availabilities. Figure 5 shows 
how the availabilities vary with the predictive 
period. 

 
Figure 4. Wind farm average turbine availabilities. 

All the three availabilities have their lowest 
value for a CM strategy (where predictive 
period is 0). In general, for a PdM strategy with 
5 days predictive period, there is a significative 
increase in the availabilities. This increase 
represents the highest variation of availability 
between maintenance strategies. The technical 
availability for CM has a value of about 0.956. 
There is a big increase to 0.989, in the 5-day 
predictive period, and hits a practically constant 
value of about 0.99 in a 10-day predictive 
period. The operational availability follows a 
similar tendency as the technical availability. 
This is, explained because the only difference 
between the two availabilities is that the 
technical availability doesn’t consider the 

downtime caused by the hourly mean wind 
speed being outside of the power curve, but the 
operational availability does consider it. The 
energetic availability is practically maximized 
for a predictive period of 20 days. The increase 
in energetic availability proves that the modeled 
PdM strategy is optimizing the scheduling of 
maintenance actions for times with low or zero 
energy production. 
Figure 6 shows the wind farm results of the total 
present value costs for different predictive 
periods. Each failure costs are depreciated from 
the failure time to the commissioning date. The 
total costs presented in the Figure 6 are the 
total of all components of all simulated turbines. 
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Figure 5. Total costs present value (PV) variation with predictive period. 

In general, the total costs variation, along the 
predictive periods, show a decreasing trend from 
0 to 20 days. The biggest cost variation happens 
from a predictive period of 0 to 5 days. This 
variation decreases with the predictive period 
and arrives to the lowest total costs in the 
predictive period of 20 days. From 20 to 80 days, 
the trend shows an increase in total costs.  
The increase in total lifetime costs for higher 
predictive periods can be explained by the extra 
generated failures resultant of the way that the 
PdM is modeled. PdM is shortening the 
remaining useful life (RUL) of a component by 
maintaining the component before it can fully 
utilize it. This enhanced for longer predictive 
periods and is causing extra failures to be 
generated at the end of the component’s 
lifetime. Higher failure rates can generate more 
extra generated failures due more RUL 
shortening. The higher the number of failures, 
the higher the total lifetime costs. 

3.2. Component Level Analysis 
The main objective of this analysis was to 
quantify the economic and logistic benefits of 

knowing in advance future component failures 
in order to react proactively. For each 
component’s maintenance type, a Monte Carlo 
simulation is used to compute statistical results 
of total costs, distributing in time 10500 failures 
for each subassembly and maintenance type, 
which was restricted from going higher due to 
computational limitations. The PdM benefits in 
median total costs were computed benchmarked 
against their CM results. With this, the median 
percentual decrease in total costs was found. 
Results show that the median benefits of the 
total costs can vary greatly between different 
maintenance types, thus maintenance types are 
presented separately. Table 2 summarizes the 
found median cost variation in the total costs of 
the replacement maintenance type. In the major 
replacement maintenance types, it can be seen a 
small percentual decrease in the total costs. 
These vary with a PdM strategy from 1.4% to 
3.2%. Even though the percentual decrease is 
small, these results present high-cost savings 
because the replacement of components is 
associated with high total costs than the other 
maintenance types. 
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Table 2. Median logistic total costs benefits of a predictive maintenance strategy for each subassembly’s replacement. 

Subassemblies’ Replacement 
Variation in Total Costs [%] 

PdM1 PdM2 PdM3 PdM4 PdM5 
Blade  -1.9 -1.9 -2.0 -2.0 -2.0 
Contactor/Circuit Breaker/Relay  -2.6 -2.8 -2.8 -2.9 -2.9 
Controls  -3.0 -3.1 -3.2 -3.2 -3.2 
Electrical Components  -2.5 -2.7 -2.7 -2.7 -2.7 
Gearbox  -1.4 -1.5 -1.5 -1.5 -1.5 
Generator  -1.9 -2.0 -2.0 -2.1 -2.1 
Hub  -2.3 -2.5 -2.5 -2.5 -2.5 
Other Components  -2.6 -2.8 -2.9 -2.9 -2.9 
Pitch/Hyd  -1.9 -2.1 -2.1 -2.1 -2.1 
Power Supply/Converter  -1.9 -2.1 -2.1 -2.2 -2.2 
Transformer  -2.1 -2.2 -2.3 -2.3 -2.3 
Yaw System  -2.2 -2.4 -2.4 -2.4 -2.4 

Table 3 summarizes the median cost variation 
in the total costs for the major repairs. 

Table 3. Median logistic total costs benefit of a predictive maintenance strategy for each subassembly’s major repair. 

Subassemblies’ Major Repair 
Variation in Total Costs [%] 

PdM1 PdM2 PdM3 PdM4 PdM5 
Blade -14.9 -15.8 -16.2 -16.2 -16.2 
Contactor/Circuit Breaker/Relay -14.5 -15.3 -15.6 -15.6 -15.6 
Controls Major Repair -18.8 -19.5 -19.6 -19.6 -19.6 
Electrical Components -18.8 -19.5 -19.6 -19.6 -19.6 
Gearbox -15.1 -16.0 -16.4 -16.5 -16.5 
Generator -15.3 -16.4 -16.8 -17.0 -17.0 
Grease/Oil/Cooling Liq. -14.4 -15.1 -15.3 -15.3 -15.3 
Heaters/Coolers -18.9 -19.6 -19.7 -19.7 -19.7 
Hub -13.3 -15.1 -15.9 -16.5 -16.8 
Other Components -14.9 -15.8 -16.1 -16.2 -16.2 
Pitch/Hyd -14.6 -15.4 -15.6 -15.7 -15.7 
Power Supply/Converter -18.4 -19.1 -19.2 -19.2 -19.2 
Pumps/Motors -17.9 -18.3 -18.3 -18.3 -18.3 
Safety -16.8 -16.9 -16.9 -16.9 -16.9 
Sensors -16.6 -16.6 -16.6 -16.6 -16.6 
Tower/Foundation -15.4 -15.4 -15.4 -15.4 -15.4 
Yaw System -14.7 -15.5 -15.8 -15.9 -15.9 

The results of major repair maintenance type 
include total cost benefits from 13.3% to 19.6%. 
Using a PdM strategy seems more advantageous 
for major repair than for the replacements, when 
looking at the percentual total cost decrease. 
Although, the total cost decrease in the 
replacement is higher, in euro, because these 

represent much higher costs. Table 4 
summarizes the median cost variation in the 
total costs of the minor repair maintenance 
type. 
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Table 4. Median total costs benefits of a predictive maintenance for each subassembly’s minor repair strategy. 

Subassemblies’ Minor Repair 
Variation in Total Costs [%] 

PdM1 PdM2 PdM3 PdM4 PdM5 
Blade -59.3 -60.3 -60.3 -60.3 -60.3 
Contactor/Circuit Breaker/Relay -56.7 -56.8 -56.8 -56.8 -56.8 
Controls -58.7 -59.4 -59.4 -59.4 -59.4 
Electrical Components -57.5 -57.7 -57.7 -57.7 -57.7 
Gearbox -58.8 -59.6 -59.6 -59.6 -59.6 
Generator -58.3 -58.9 -58.9 -58.9 -58.9 
Grease/Oil/Cooling Liq. -57.2 -57.3 -57.3 -57.3 -57.3 
Heaters/Coolers -56.7 -56.9 -56.9 -56.9 -56.9 
Hub -59.3 -60.5 -60.5 -60.5 -60.5 
Other Components -57.9 -58.1 -58.1 -58.1 -58.1 
Pitch/Hyd Minor Repair -58.9 -59.8 -59.8 -59.8 -59.8 
Power Supply/Converter -58.2 -58.7 -58.7 -58.7 -58.7 
Pumps/Motors -57.1 -57.2 -57.2 -57.2 -57.2 
Safety -56.4 -56.4 -56.4 -56.4 -56.4 
Sensors -58.6 -59.3 -59.3 -59.3 -59.3 
Service Items -58.5 -59.0 -59.0 -59.0 -59.0 
Tower/Foundation -56.7 -56.9 -56.9 -56.9 -56.9 
Transformer -57.9 -58.4 -58.4 -58.4 -58.4 
Yaw System -57.4 -57.6 -57.6 -57.6 -57.6 

The minor repairs can have the greatest benefits 
when compared to their total cost for a CM. 
Implementing a PdM strategy results in a drop 
in costs ranging from 56.4% to 60.5%, depending 
on the predictive period. Noting that these 
costs, in euro, are much lower than for other 
maintenance types. 
Results show that the biggest decrease in total 
costs is for the maintenance strategy with a 
predictive period 5 days. Even though this may 
seem a small window to perform PdM, it is 
already of great advantage to use this strategy. 
This is seen throughout all component’s 
maintenance types. The total costs still decrease 
with higher predictive periods, but not in such 
degree as from the corrective to the first PdM 
strategy. 

4. Conclusions 
At wind farm level, it was found that 
implementing PdM strategies led to a slight 
increase in the total number of failures, due to 
RUL shortening. This is a resultant of how the 

PdM was modeled where it’s purely minimizing 
the total costs and is not maximizing the RUL, 
in its optimization. Thus, this is enhanced for 
higher predictive periods where there is higher 
flexibility to schedule maintenances. Results 
show that the three lifetime availabilities can be 
greatly increased. The biggest increase occurs 
from CM to PdM1. The lowest total costs, and 
highest energetic availability, are found for a 20-
day predictive period. Although, these results 
are very similar to the results of the 10-day 
predictive period. On the other hand, there are 
already major benefits of using a 5-day 
predictive period. 
At component level, a PdM strategy is 
optimizing the total costs. These costs are 
greatly optimized for longer predictive periods 
because there is more flexibility to schedule 
maintenance actions in times where the energy 
loss and waiting’s are lower. This is 
consequently translated in lower energy loss, 
vessel, and technician costs. Component level 
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results show that different components, and 
their maintenance types, have different logistic 
benefits. Major differences were found between 
different maintenance types, where the total 
costs of the replacements vary from 1.4% to 
3.2%, major repairs from 13.3% to 19.6%, and 
minor repairs from 56.4% to 60.5%. In 
percentage, the total cost benefits are increasing 
from replacement to minor repair maintenance 
types. When the total cost benefits are 
translated to euro, the replacement of 
components has much higher costs savings than 
the major repair and these are even higher than 
minor repairs. 
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